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Abstract. By an abc triple, we mean a triple (a, b, c) of relatively prime positive integers a, b, and c
such that a+ b = c and rad(abc) < c, where rad(n) denotes the product of the distinct prime factors
of n. The necessity of the ϵ in the abc conjecture is demonstrated by the existence of infinitely many
abc triples. For instance,

(
1, 9k − 1, 9k

)
is an abc triple for each positive integer k. In this article,

we study abc triples of the form (1, c− 1, c) and deduce two general results that allow us to recover
existing sequences in the literature of abc triples with a = 1.

1. Introduction

In 1985, Masser and Oesterlé proposed the abc conjecture [Oes88, Mas17], which states:
The abc conjecture. For every ϵ > 0, there are finitely many relatively prime positive integers
a, b, and c with a+ b = c such that

rad(abc)1+ϵ < c,

where rad(n) denotes the product of the distinct prime factors of a positive integer n.
Due to its profound implications, this simple-to-state conjecture is one of the most important

open questions in number theory. For instance, some consequences of the abc conjecture include an
asymptotic version of Fermat’s Last Theorem, Faltings’s Theorem, Roth’s Theorem, and Szpiro’s
Conjecture [Elk91, Lan90, Oes88]. For further information on the abc conjecture, see the excellent
survey article [MM16].

The statement of the abc conjecture naturally leads us to ask if the ϵ is necessary? This leads
us to the “simplistic abc conjecture,” which asks if there are finitely many relatively prime positive
integers a, b, and c with a + b = c for which rad(abc) < c. We call such triples (a, b, c) an abc

triple. The “simplistic abc conjecture” is false, as demonstrated by the triple
(
1, 32

k − 1, 32
k
)
,

which is an abc triple for each positive integer k. This infinite sequence of abc triples is one of the
first documented counterexamples to the simplistic abc conjecture and was communicated to Lang
by Jastrzebowski and Spielman [Lan90]. A theorem of Stewart [Ste84] leads to similar sequences

of abc triples such as
(
1, 87

k − 1, 87
k
)
, where k is a positive integer [MM16]. Jastrzebowski and

Spielman’s counterexample can also be recovered from the following result: for each odd prime p
and each positive integer k,

(
1, p(p−1)k − 1, p(p−1)k

)
is an abc triple [Bar23]. Another construction,

due to Granville and Tucker [GT02], shows that for each odd prime p,
(
1, 2p(p−1) − 1, 2p(p−1)

)
is an

abc triple.
In this article, we prove that (1, c−1, c) is an abc triple if and only if cosocle(c−1) > rad(c), where

cosocle(m) = m
rad(m) for m a positive integer (see Proposition 2.2). We note that the term cosocle

is borrowed from module theory, where the cosocle of an R-module M is the maximal semisimple
quotient of M , or equivalently, M

rad(M) . In our setting, the cosocle plays a crucial role in our results,

from which we recover each of the above mentioned sequences of abc triples. To provide context
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for our work, we note that the equivalence above requires us to compute cosocle(c− 1) in order to
deduce whether (1, c−1, c) is an abc triple. The computation of cosocle(c−1) requires knowledge of
the prime factorization of c− 1, which becomes computationally difficult as c gets large. Our main
results provide a recipe for constructing infinitely many abc triples of the form (1, c− 1, c) based on
knowledge of a divisor of c− 1 or c. Our first theorem illustrates this:

Theorem 1. Let c and m be positive integers with c > 1. If m divides c−1 and cosocle(m) > rad(c),
then

(
1, ck − 1, ck

)
is an abc triple for each positive integer k..

We prove Theorem 1 in Section 2. While the proof is elementary, the result allows us to recover
each of the previously mentioned sequences of abc triples. It also leads to new sequences of abc
triples, such as

(
1, n(n−1)k − 1, n(n−1)k

)
which is an abc triple for each positive integer k whenever n

is a positive integer that is either odd or even and non-squarefree (see Corollary 3.7). A slight
modification of the proof of Theorem 1 leads us to our next result (which is also proven in Section 2):

Theorem 2. Let b and m be positive integers. If m divides b + 1 and cosocle(m) > rad(b), then(
1, bk, bk + 1

)
is an abc triple for each positive odd integer k.

A consequence of Theorem 1 is that if (1, c − 1, c) is an abc triple, then (1, ck − 1, ck) is an
abc triple for each positive integer k (see Corollary 2.4). Similarly, we obtain from Theorem 2
that if (1, b, b + 1) is an abc triple, then (1, bk, bk + 1) is an abc triple for each odd integer k (see
Corollary 2.5). These results lead to the following question: given an integer c > 1, for what positive
integers k is (1, ck−1, ck) an abc triple? We answer this question with Theorem 2.8, which provides
necessary and sufficient conditions to determine those integers k which yield an abc triple of the
form (1, ck − 1, ck).

In Section 3, we demonstrate various consequences of Theorems 1 and 2. For example, we prove
that if n > 1 is an integer and p is an odd prime such that p > rad(n), then

(
1, np(p−1)k − 1, np(p−1)k

)
is an abc triple for each positive integer k (see Corollary 3.5). In particular, taking (n, k) = (2, 1)
allows us to recover Granville and Tucker’s original construction [GT02]. Another consequence is the
following: if n ≥ 3 is an odd integer and b = nj −1 for some positive integer j, then

(
1, bnk, bnk + 1

)
is an abc triple for each positive odd integer k (see Corollary 3.12). Taking (n, j) = (3, 1) gives us
that

(
1, 8k, 8k + 1

)
is an abc triple for each odd integer k.

We conclude the article with Section 4, which is an analysis of the abc triples found by the
ABC@Home Project of the form (1, c− 1, c) with c < 1018. The ABC@Home Project was a network
computing project that was started in 2006 by the Mathematics Department of Leiden University,
together with the Dutch Kennislink Science Institute. By 2011, they found that there are exactly
14 482 065 abc triples (a, b, c) with c < 1018. By the time the project came to a close in 2015, the
ABC@Home Project had found a total of 23 827 716 abc triples (a, b, c) with c < 263. We note that
this list is not exhaustive of all abc triples with c < 263. In particular, the ABC@Home project found
that there are exactly 45 604 abc triples of the form (1, c− 1, c) with c < 1018. Further observations
about the abc triples found by the ABC@Home Project can be found in [Pal14, Chapter 7].

Motivated by the results in Section 3, we study those abc triples found by the ABC@Home
Project that are of the form (1, nl − 1, nl) or (1, nl, nl + 1) for some integer l > 1. We find that
this amounts to 8 413 abc triples. For abc triples (1, c− 1, c) of the aforementioned form, we show
that approximately 48.7% of the abc triples with c ≤ 106 can be obtained from the results proven
in Section 3. We also find that for abc triples of the form (1, nl − 1, nl), there are only four cases
where there does not exists a proper divisor m of nl − 1 for which cosocle(m) > rad(n).
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2. Main Results

In this section, we establish Theorems 1 and 2. To do so, we recall the following elementary
property about the radical of a positive integer:

Lemma 2.1. Let m and n be relatively prime positive integers. Then rad(mn) = rad(m) rad(n)
and rad(m) ≤ m. Moreover, rad

(
mk

)
= rad(m) for each positive integer k.

We will assume Lemma 2.1 implicitly throughout this work. Next, we show an important facet
about abc triples of the form (1, c− 1, c), which showcases the importance of the cosocle in our
arguments:

Proposition 2.2. Let c > 1 be an integer. Then the following are equivalent:

(i) cosocle(c− 1) > rad(c);
(ii) cosocle(c) > rad(c− 1);
(iii) (1, c− 1, c) is an abc triple.

Proof. Suppose that rad(c) < cosocle(c− 1). Since rad(c) = c
cosocle(c) and cosocle(c− 1) = c−1

rad(c−1) ,

we deduce that

rad(c) < cosocle(c− 1) ⇐⇒ c

cosocle(c)
<

c− 1

rad(c− 1)

⇐⇒ rad(c− 1) <
c− 1

c
cosocle(c) .

Since c−1
c < 1, we have the desired inequality: rad(c− 1) < cosocle(c).

Next, suppose that rad(c−1)
cosocle(c) < 1. Since rad(c) = c

cosocle(c) , we observe that

rad(c(c− 1)) = rad(c) rad(c− 1) =
rad(c− 1)

cosocle(c)
c < c,

which shows that (1, c− 1, c) is an abc triple.
Lastly, if (1, c− 1, c) is an abc triple, then rad(c(c− 1)) < c. Consequently,

c > rad(c(c− 1)) = rad(c) rad(c− 1) =
rad(c)(c− 1)

cosocle(c− 1)

=⇒ rad(c) < cosocle(c− 1)
c

c− 1
.

Since rad(c) is an integer and c
c−1 > 1, we deduce that rad(c) ≤

⌊
cosocle(c− 1) c

c−1

⌋
, where ⌊x⌋

denotes the floor function. Since cosocle(c−1)
c−1 < 1, we observe that⌊

cosocle(c− 1)
c

c− 1

⌋
=

⌊
cosocle(c− 1) +

cosocle(c− 1)

c− 1

⌋
= cosocle(c− 1).

Lastly, c is relatively prime to c− 1, and thus cosocle(c− 1) > rad(c). □

An automatic consequence of Proposition 2.2 is that if c or c− 1 is squarefree, then (1, c− 1, c) is
not an abc triple since the cosocle of a squarefree positive integer is 1. Our next result establishes
that the radical of a positive integer n is preserved if n is divided by the cosocle of any of its divisors:

Lemma 2.3. Let m and n be positive integers. If m divides n, then rad(n) = rad
(

n
cosocle(m)

)
.
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Proof. If m = 1, there is nothing to show. So suppose that m > 1 and let m =
∏r

i=1 p
ei
i be

the unique prime factorization of m, with each pi denoting a distinct prime. Since m divides n,

we have that n = q
∏r

i=1 p
fi
i where ei ≤ fi for 1 ≤ i ≤ r and q is relatively prime to m. Since

cosocle(m) =
∏r

i=1 p
ei−1
i , we deduce that

n

cosocle(m)
= q

r∏
i=1

pfi−ei+1
i

For 1 ≤ i ≤ r, observe that fi − ei + 1 ≥ 1 and thus rad
(

n
cosocle(m)

)
= rad(n). □

With this lemma, we are now ready to prove Theorem 1:

Proof of Theorem 1. Since ck − 1 = (c− 1)
∑k−1

j=0 c
j , we deduce that m divides ck − 1 for each

positive integer k. By Lemma 2.3, rad
(
ck − 1

)
= rad

(
ck−1

cosocle(m)

)
. By assumption, rad(c)

cosocle(m) < 1

and thus

rad
(
ck

(
ck − 1

))
= rad(c) rad

(
ck − 1

cosocle(m)

)
≤ rad(c)

cosocle(m)

(
ck − 1

)
< ck − 1.

The result now follows since

ck − rad
(
ck

(
ck − 1

))
> ck − ck + 1 = 1. □

An immediate consequence of Theorem 1 and Proposition 2.2, is the following result:

Corollary 2.4. If (1, c− 1, c) is an abc triple, then
(
1, ck − 1, ck

)
is an abc triple for each positive

integer k.

In the next section, we will consider further consequences of Theorem 1 that do not require knowl-
edge of an abc triple at the start. The proof of Theorem 1 relies on the factorization of ck − 1. A
similar factorization holds for bk + 1 if k is odd, and our proof of Theorem 2 makes use of this:

Proof of Theorem 2. If k is a positive odd integer, then bk + 1 = (b+ 1)
∑k−1

j=0 (−1)j bj . It follows

that m divides bk + 1 for each positive integer k. By Lemma 2.3, rad(bk + 1) = rad
(

bk+1
cosocle(m)

)
.

Since rad(b)
cosocle(m) < 1, we observe that

rad
(
bk

(
bk + 1

))
= rad(b) rad

(
bk + 1

cosocle(m)

)
≤ rad(b)

cosocle(m)
rad(bk + 1) < bk + 1.

Consequently,

bk + 1− rad
(
bk

(
bk + 1

))
> bk + 1− bk − 1 = 0. □

Similarly to the deduction of Corollary 2.4, we now recover the following result as an immediate
consequence of Theorem 2 and Proposition 2.2:

Corollary 2.5. If (1, b, b+ 1) is an abc triple, then
(
1, bk, bk + 1

)
is an abc triple for each positive

odd integer k.

Since (1, 8, 9) is an abc triple, we deduce from Corollary 2.5 that (1, 8k, 8k + 1) is an abc triple
for each positive odd integer k. We will also recover this sequence of abc triples as a consequence
of Corollary 3.12.

By Corollary 2.4, we have that if (1, c− 1, c) is an abc triple, then
(
1, ck − 1, ck

)
is an abc triple

for each positive integer k. This leads us to ask: given a positive integer c > 1, for what positive
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integers k is
(
1, ck − 1, ck

)
an abc triple? To answer this question, we first recall a few number

theory facts. Given a prime number p and a positive integer n, the p-adic valuation of n, denoted
vp(n), is the unique integer that satisfies n = pvp(n)q for some integer q that is relatively prime to
p. Suppose further that p does not divide n. Then the order of n modulo p, denoted ordp(n), is the

least positive integer for which nordp(n) ≡ 1 mod p. By Fermat’s Little Theorem, ordp(n) divides

p − 1. More generally, nk ≡ 1 mod p if and only if ordp(n) divides k. With this terminology, we

determine the exact power of a prime p that divides ck − 1:

Lemma 2.6. Let c and k be positive integers with c > 1. Then p divides ck−1 if and only if ordp(c)

divides k. Moreover, if p divides ck − 1, then vp
(
ck − 1

)
= fp +wp, where fp = vp

(
cordp(c) − 1

)
and

wp = vp(k).

Proof. The statement that p divides ck−1 if and only if ordp(c) divides k is a standard number theory

result. So suppose that p divides ck − 1. Then ordp(c) divides k and p − 1. In particular, ordp(c)
is not divisible by p. It follows that k = q1p

wp ordp(c) for some integer q1 that is not divisible by p.

By assumption, cordp(c) − 1 = q2p
fp for some integer q2 that is not divisible by p. Now observe that

by the Binomial Theorem,

ck =
(
cordp(c)

)q1p
wp

=
(
q2p

fp + 1
)q1p

wp

= 1 + q1q2p
fp+wp +

q1p
wp−1∑
j=2

(
q1p

wp

j

)
qj2p

fpj .

For 2 ≤ j ≤ q1p
wp − 1, we have that pwp+fp+1 divides

(
q1p

wp

j

)
qj2p

fpj . Hence ck ≡ 1 mod pwp+fp and

ck ≡ 1 + q1q2p
fp+wp mod pfp+wp+1 ̸= 0. In particular, vp

(
ck − 1

)
= fp + wp. □

As an immediate consequence of Lemma 2.6 and the Fundamental Theorem of Arithmetic, we
obtain the following factorization for ck − 1:

Corollary 2.7. Let c and k be positive integers with c > 1. Then with notation as in Lemma 2.6,

ck − 1 =
∏

ordp(c)|k

pfp+wp .

As a demonstration of Corollary 2.7, let c = 21 and k = 12. With notation as above, we see that
w2 = 2, w3 = 1, and wp = 0 for each prime p ̸= 2, 3. Next, we observe that

(2.1) 2112 − 1 = 24 · 5 · 11 · 13 · 17 · 61 · 421 · 463 · 3181.
By Lemma 2.6, the primes appearing in (2.1) are precisely those primes p for which ordp(21) divides
12. With a computer algebra system, such as SageMath [S+23], it is checked that fp = 1 for each

prime p ̸= 2 appearing in (2.1) and f2 = 2. Thus, 2112 − 1 =
∏

ordp(21)|12 p
fp+wp .

Theorem 2.8. Let c and k be positive integers with c > 1. With notation as in Corollary 2.7, write

ck − 1 =
∏

ordp(c)|k

pfp+wp .

Then
(
1, ck − 1, ck

)
is an abc triple if and only if one of the following conditions hold:

(i) there exists a prime p > rad(c) such that ordp(c) divides k and either fp ≥ 2 or wp ≥ 1;
(ii) there exists a prime p < rad(c) such that ordp(c) divides k and fp +wp − 1 ≥ mp, where mp

denote the least positive integer such that pmp > rad(c);
(iii) for each prime p such that ordp(c) divides k, there exist a non-negative integer ap ≤ fp+wp−1

such that
∏

ordp(c)|k p
ap > rad(c).
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Proof. First suppose that
(
1, ck − 1, ck

)
is an abc triple. By Proposition 2.2, this is equivalent to

rad(c) < cosocle
(
ck − 1

)
=

∏
ordp(c)|k

pfp+wp−1.

In particular, taking ap = fp + wp − 1 yields (iii).
Now suppose there is a prime p > rad(c) such that ordp(c) divides k and either fp ≥ 2 or wp ≥ 1.

Note that fp ≥ 1 for each prime p such that ordp(c) divides k. Consequently, if fp ≥ 2 or wp ≥ 1,

then fp+wp ≥ 2 and thus p2 divides ck−1. Then
(
1, ck − 1, ck

)
is an abc triple by Theorem 1 since

cosocle
(
p2
)
= p > rad(c).

Next, suppose that there is a prime p < rad(c) such that ordp(c) divides k and fp+wp− 1 ≥ mp.

Then pmp+1 divides ck − 1 and

cosocle
(
pmp+1

)
= pmp > rad(c) .

By Theorem 1, we deduce that
(
1, ck − 1, ck

)
is an abc triple.

Lastly, suppose that for each prime p such that ordp(c) divides k, there exist a positive integer

ap ≤ fp + wp − 1 such that
∏

ordp(c)|k p
ap > rad(c). Then

∏
ordp(c)|k p

ap+1 divides ck − 1 and the

result now follows by Theorem 1 since

cosocle

 ∏
ordp(c)|k

pap+1

 =
∏

ordp(c)|k

pap > rad(c) . □

As an illustration, consider c = 21 and k = 12. In the discussion following Corollary 2.7, we
noted that w2 = f2 = 2. Moreover, for each prime p ̸= 2 appearing in (2.1) we have that fp = 1
and wp = 0. In particular, we see that statements (i) and (ii) of Theorem 2.8 are not satisfied for
each prime p appearing in (2.1). We also have that statement (iii) is not satisfied as the only prime
for which fp + wp − 1 > 0 is p = 2 and 2f2+w2−1 = 16 < rad(21). It follows that

(
1, 2112 − 1, 2112

)
is not an abc triple. In the next section, we will see that 21 is the first odd integer n > 1 for which(
1, nφ(n) − 1, nφ(n)

)
is not an abc triple, where φ(n) denotes the Euler-totient function. We note

that φ(21) = 12.

3. Consequences

In this section, we consider various consequences of Theorems 1 and 2. From these consequences,
we deduce the sequences of abc triples that were mentioned in the introduction. We note that
this article began as an investigation of the following question: for what positive odd integers n
is

(
1, nφ(n) − 1, nφ(n)

)
an abc triple? Here φ(n) denotes the Euler-totient function. The question

was motivated by the following observation: if n is an odd integer such that 3 ≤ n ≤ 99, then(
1, nφ(n) − 1, nφ(n)

)
is an abc triple for each n except n = 21, 39, 69, and 87. The fact that the four

exceptions are composites is no surprise, as the question is true for odd primes n [Bar23]. Our
investigation of this phenomenon led to our Theorems 1 and 2, and our first consequence provides
necessary conditions for when

(
1, nφ(n) − 1, nφ(n)

)
is an abc triple for a positive odd integer n. To

prove this result, we first recall the following result from elementary number theory:

Lemma 3.1. Let n be a positive odd integer. Then n2k ≡ 1 mod 2k+2 for each positive integer k.

Proof. Since n is odd, there is an integer m such that n = 2m+ 1. By the Binomial Theorem,

n2k = (2m+ 1)2
k

=
2k∑
j=0

(
2k

j

)
(2m)j = 1 + 2k+1m

(
1 +

(
2k − 1

)
m
)
+

2k∑
j=3

(
2k

j

)
(2m)j .
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Now observe that m
(
1 +

(
2k − 1

)
m
)
is always even and

(
2k

j

)
(2m)j is divisible by 2k+2 for 3 ≤ j ≤

2k. Consequently, n2k ≡ 1 mod 2k+2. □

With this result, we obtain our our first application of Theorem 1:

Corollary 3.2. Let n > 1 be an odd integer and let φ denote the Euler-totient function. Set
d = gcd(n−1, φ(n)) and m = 2v2(4φ(n))−2v2(d)d2. If cosocle(m) > rad(n), then

(
1, nφ(n)k − 1, nφ(n)k

)
is an abc triple for each positive integer k.

Proof. Let P =
∑φ(n)−1

j=0 nj and observe that nφ(n) − 1 = (n− 1)P . Since d = gcd(n− 1, φ(n))
divides n− 1, n ≡ 1 mod d and thus

P ≡
φ(n)−1∑
j=0

1j mod d = φ(n) mod d.

In particular, d divides P . Since nφ(n) − 1 = (n− 1)P , we deduce that d2 divides nφ(n) − 1.

Next, write φ(n) = 2v2(φ(n))r for r an odd integer. By Lemma 3.1,

nφ(n) − 1 = (nr)2
v2(φ(n))

− 1 ≡ 0 mod 2v2(φ(n))+2.

Hence 2v2(φ(n))+2 divides nφ(n) − 1. It follows that

2v2(φ(n))+2 d2

2v2(d2)
= 2v2(4φ(n))−2v2(d)d2 = m

divides nφ(n) − 1. The result now follows from Theorem 1. □

As an illustration, let n = 75. Then with notation as in Corollary 3.2, we observe that φ(75) =
40, d = 2, and m = 32. Since cosocle(32) = 16 > rad(75) = 15, we have that

(
1, 7540k − 1, 7540k

)
is an abc triple for each positive integer k. We note that the converse to Corollary 3.2 does not
hold. In fact, if 3 ≤ n ≤ 99 is an odd integer such that

(
1, nφ(n) − 1, nφ(n)

)
is an abc triple, then the

corollary fails to show the cases corresponding to n = 33, 35, 55, 57, 63, 65, 77, 93, 95, and 99. The
following result provides an improvement, but comes at the cost of having to compute vp(n

φ(n)− 1)

for each prime p that divides gcd(nφ(n) − 1, φ(n)):

Corollary 3.3. Let n > 1 be an integer and let φ denote the Euler-totient function. Set d =
gcd(nφ(n) − 1, φ(n)) and

m =
∏
p|d

pvp(n
φ(n)−1).

If cosocle(m) > rad(n), then
(
1, nφ(n)k − 1, nφ(n)k

)
is an abc triple for each positive integer k.

Proof. By construction, m divides nφ(n) − 1. The result now follows from Theorem 1. □

For odd integers n such that 3 ≤ n ≤ 99 and
(
1, nφ(n) − 1, nφ(n)

)
is an abc triple, Corollary 3.3

allows us to conclude that
(
1, nφ(n) − 1, nφ(n)

)
is an abc triple for each n except n = 55, 57. When

n = 55, we have that φ(55) = 40 and gcd
(
5540 − 1, 40

)
= 8. Then m = 2v2(55

40−1) = 64, and thus

cosocle(64) = 32 < rad(55) = 55. Consequently, Corollary 3.3 fails to show that
(
1, 5540 − 1, 5540

)
is an abc triple. We note the cosocle

(
5540 − 1

)
= 288, and hence

(
1, 5540k − 1, 5540k

)
is an abc triple

for each positive integer k by Proposition 2.2. The failure of Corollaries 3.2 and 3.3 in the n = 55 case
stems from the fact that the primes dividing m must divide φ(n). Indeed, cosocle

(
5540 − 1

)
= 32 ·9

and 3 ∤ φ(55).
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To state our next result, we recall the Carmichael function λ : N → N, which has the property
that λ(m) is the least positive integer for which aλ(m) ≡ 1 modm for each integer a that is relatively
prime to m. In particular, λ(m) divides φ(m).

Corollary 3.4. Let λ and φ denote the Carmichael function and Euler-totient function, respec-
tively. If m and n are relatively prime positive integers such that cosocle(m) > rad(n) > 1, then(
1, nλ(m)k − 1, nλ(m)k

)
and

(
1, nφ(m)k − 1, nφ(m)k

)
are abc triples for each positive integer k.

Proof. Since nλ(m) ≡ 1 modm, we have that m divides nλ(m) − 1. By Theorem 1, we have that(
1, nλ(m)k − 1, nλ(m)k

)
is an abc triple for each positive integer k. Since λ(m) | φ(m), we also have

that
(
1, nφ(m)k − 1, nφ(m)k

)
is an abc triple for each positive integer k. □

As an example, choose n = 11 and m = 32. Then cosocle(32) = 16 > rad(11), and therefore

the conditions of Corollary 3.4 are satisfied. As a result, we find that
(
1, 11λ(32)k − 1, 11λ(32)k

)
=

(1, 118k − 1, 118k) is a sequence of abc triples. More generally, we have the following application of
Corollary 3.4:

Corollary 3.5. Let n > 1 be an integer and let p be an odd prime such that p > rad(n). Then for

each positive integer k,
(
1, np(p−1)k − 1, np(p−1)k

)
is an abc triple.

Proof. By assumption, cosocle
(
p2
)
= p > rad(n). Moreover, λ

(
p2
)
= p (p− 1) since p is prime. It

follows from Corollary 3.4 that
(
1, nλ(p2)k − 1, nλ(p2)k

)
=

(
1, np(p−1)k − 1, np(p−1)k

)
is an abc triple

for each positive integer k. □

Taking (n, k) = (2, 1) in Corollary 3.5 yields that
(
1, 2p(p−1) − 1, 2p(p−1)

)
is an abc triple for each

odd prime p. This result is originally due to Granville and Tucker [GT02]. Theorem 2.8 gives the
following refinement of Corollary 3.5:

Corollary 3.6. Let n > 1 be an integer and let p be an odd prime such that p > rad(n). Then for

each positive integer k,
(
1, np ordp(n)k − 1, np ordp(n)k

)
is an abc triple. In particular, if n ≡ 1 mod p

and p > rad(n), then
(
1, npk − 1, npk

)
is an abc triple for each positive integer n.

Proof. In the notation of Theorem 2.8, we have that wp = vp(p ordp(n)) = 1. Since p > rad(n) and

ordp(n) divides p ordp(n), Theorem 2.8 (i) implies that
(
1, np ordp(n) − 1, np ordp(n)

)
is an abc triple.

The result now follows by Corollary 2.4. The second statement is automatic since if n ≡ 1 mod p,
then ordp(n) = 1. □

As a demonstration, let n = 16 and p = 5. Then Corollary 3.6 asserts that
(
1, 165k − 1, 165k

)
is

an abc triple for each positive integer k.

Corollary 3.7. Let n > 1 be an integer that is either odd or even and non-squarefree. Then(
1, n(n−1)k − 1, n(n−1)k

)
is an abc triple for each positive integer k.

Proof. Let P =
∑n−2

j=0 n
j and observe that nn−1 − 1 = (n− 1)P . Moreover,

P ≡
n−2∑
j=0

(1)j mod(n− 1) = 0 mod (n− 1) .

In particular, (n− 1)2 divides nn−1 − 1 and thus

rad(nn−1 − 1) = rad

(
nn−1 − 1

n− 1

)
.
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Now suppose that n is odd. We claim that 4 divides P . If n ≡ 1 mod 4, then this follows since P
is divisible by n − 1. So suppose that n ≡ 3 mod 4. Then 4 divides n + 1, and hence 4 divides P
since

P ≡
n−2∑
j=0

(−1)j mod(n+ 1) = 0 mod (n+ 1) .

Consequently,

(3.1) rad(nn−1 − 1) = rad

(
nn−1 − 1

2 (n− 1)

)
≤ nn−1 − 1

2 (n− 1)
.

Now observe that by (3.1),

cosocle(nn−1 − 1) =
nn−1 − 1

rad(nn−1 − 1)
≥ 2 (n− 1) > rad(n).

The claim now follows by Theorem 1 with m = nn−1 − 1.
Lastly, suppose that n is an even non-squarefree positive integer. Then n = a2b for some positive

integers a and b with a > 1 and b squarefree. Then rad(n) = rad(ab) ≤ ab < n − 1. Since

rad(nn−1 − 1) = rad
(
nn−1−1
n−1

)
≤ nn−1−1

n−1 , we deduce that

cosocle(nn−1 − 1) =
nn−1 − 1

rad(nn−1 − 1)
≥ n− 1 > rad(n) .

The result follows by Theorem 1 with m = nn−1 − 1. □

From Corollary 3.7, we recover that
(
1, 9k − 1, 9k

)
=

(
1, 32k − 1, 32k

)
is a sequence of abc triples.

In particular, we obtain the smallest abc triple (1, 8, 9) as a special case. Taking n = 8 in
Corollary 3.7 gives us the sequence of abc triples

(
1, 87k − 1, 87k

)
, which generalizes the sequence(

1, 87
k − 1, 87

k
)
that appears in [MM16].

Corollary 3.8. Let n > 1 be an integer. Then
(
1, n(n+1)k − 1, n(n+1)k

)
is an abc triple whenever

(n+ 1) k is a positive even integer.

Proof. Let l be a positive even integer and let P =
∑l−1

j=0 (−1)j+1 nj . Then nl − 1 = (n+ 1)P . We
now proceed by cases.

Case 1. Suppose that n is a positive even integer and let l = 2 (n+ 1). Since n ≡ −1 mod(n+ 1),

we have that P ≡
∑l−1

j=0 (−1)j+1 = 0 mod(n+ 1) and thus

rad(nl − 1) = rad

(
nl − 1

n+ 1

)
≤ nl − 1

n+ 1
.

The claim now holds by Theorem 1 with m = nl − 1 since

cosocle(nl − 1) =
nl − 1

rad(nl − 1)
≥ n+ 1 > rad(n).

Case 2. Suppose that n is a positive odd integer. Then l = n+1 is even and P ≡ 0 mod(n+ 1).
A similar argument to that of Case 1 with m = nl−1 shows that the result holds by Theorem 1. □

As an example, choose n = 21. As a result, (n + 1)k is even for every positive integer k and by
Corollary 3.8,

(
1, 2122k − 1, 2122k

)
is a sequence of abc triples.



10 ELISE ALVAREZ-SALAZAR, ALEXANDER J. BARRIOS, CALVIN HENAKU, AND SUMMER SOLLER

Corollary 3.9. Let j ≥ 2 be an integer. Then
(
1,
(
2j − 1

)2k − 1,
(
2j − 1

)2k)
is an abc triple for

each positive integer k.

Proof. Observe that rad
((

2j − 1
)2)

= rad
(
2j − 1

)
≤ 2j − 1. Since

(
2j − 1

)2 − 1 = 2j+1
(
2j−1 − 1

)
,

we deduce that

cosocle
((

2j − 1
)2 − 1

)
=

2j+1
(
2j−1 − 1

)
2 rad(2j−1 − 1)

=
2j

(
2j−1 − 1

)
rad(2j−1 − 1)

≥ 2j .

The result now follows from Theorem 1, since cosocle((2j − 1)2 − 1) > rad((2j − 1)2). □

The j = 2 and j = 3 cases in Corollary 3.9 result in the sequences of abc triples
(
1, 9k − 1, 9k

)
and

(
1, 49k − 1, 49k

)
, respectively. Of note is that the proof of the corollary is made possible by the

lower bound, cosocle
((

2j − 1
)2 − 1

)
≥ 2j . This leads us to ask, can Corollary 3.9 be generalized

to deduce sequences of abc triples (1, c− 1, c) with cosocle(c− 1) bounded below by nj for some

positive integer of the form nj? The answer is yes, but we have to take c =
(
nj − 1

)k
for some

positive even integer k that is divisible by n to allow a similar argument to that of Corollary 3.9 to
work. This is shown below:

Corollary 3.10. Let n ≥ 3 and j ≥ 1 be integers. If k is a positive integer such that nk is even,

then
(
1,
(
nj − 1

)nk − 1,
(
nj − 1

)nk)
is an abc triple.

Proof. Observe that rad
((

nj − 1
)nk) ≤ nj − 1 and

(
nj − 1

)nk − 1 = −1 +
nk∑
l=0

(
nk

l

)
njl (−1)nk−l = −knj+1 +

nk∑
l=2

(
nk

l

)
njl (−1)nk−l .

Note that in the last expression, each term in the sum is divisible by nj+1. From this, we deduce

that cosocle
((

nj − 1
)nk − 1

)
≥ nj . Hence cosocle

((
nj − 1

)nk − 1
)

> rad
((

nj − 1
)nk)

, and the

result now follows by Theorem 1. □

As an illustration, consider (n, j) = (3, 1) and k = 2l for some positive integer l. This results in
the sequence of abc triples

(
1, 64l − 1, 64l

)
.

Corollary 3.11. Let n be a positive even integer. Then
(
1, n(n+1)k, n(n+1)k + 1

)
is an abc triple

for each positive odd integer k.

Proof. Observe that nn+1 + 1 = (n+ 1)
∑n

j=0 (−1)j nj . Since n ≡ −1 mod(n+ 1), it follows that

n∑
j=0

(−1)j nj ≡
n∑

j=0

1 mod(n+ 1) = 0 mod(n+ 1)

Hence, rad(nn+1 + 1) = rad
(
nn+1+1
n+1

)
≤ nn+1+1

n+1 . Consequently,

cosocle(nn+1 + 1) =
nn+1 + 1

rad(nn+1 + 1)
≥ n+ 1 > rad(n) .

The result now follows from Theorem 2 by taking m = nn+1 + 1. □

As a demonstration of the corollary, take n = 22. Then
(
1, 2223k, 2223k + 1

)
is a sequence of abc

triples for each positive odd integer k.
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Corollary 3.12. Let n ≥ 3 be an odd integer and let j ≥ 1 be an integer. Then for each odd

integer k,
(
1,
(
nj − 1

)nk
,
(
nj − 1

)nk
+ 1

)
is an abc triple.

Proof. Observe that rad
((
nj − 1

)n) ≤ nj − 1 and(
nj − 1

)n
+ 1 = 1 +

n∑
l=0

(
n

l

)
njl (−1)n−l = nj+1 +

n∑
l=2

(
n

l

)
njl (−1)n−l .

Note that in the last expression, each term in the sum is divisible by nj+1. From this, we conclude
that cosocle

((
nj − 1

)n
+ 1

)
≥ nj . Hence cosocle

((
nj − 1

)n
+ 1

)
> rad

((
nj − 1

)n)
, and the result

now follows by Theorem 2. □

As an example, let n = 3 and j = 1. Then we get the sequence of abc triples
(
1, 8k, 8k + 1

)
for

each odd integer k. In particular, we recover the abc triple (1, 8, 9) as a special case.

4. abc triples of the form (1, c− 1, c) and the ABC@Home Project

The ABC@Home project found that there are exactly 14 482 065 abc triples (a, b, c) with c < 1018.
The information found by the ABC@Home project is available on Bart de Smit’s webpage [dS23].
Given an abc triple (a, b, c), we define its quality to be

q(a, b, c) =
log c

log rad(abc)
.

By definition, we see that since rad(abc) < c, an abc triple (a, b, c) satisfies q(a, b, c) > 1. This
gives us the following restatement of the abc conjecture: For each ϵ > 0, there are finitely many abc
triples (a, b, c) with q(a, b, c) > 1 + ϵ.

The abc triple with the largest known quality is
(
2, 310 · 109, 235

)
, which has a quality of approx-

imately 1.6299. In fact, Baker’s [Bak04] explicit abc conjecture asserts that there is no abc triple
(a, b, c) with q(a, b, c) ≥ 7

4 . From this statement, Fermat’s Last Theorem for exponent n > 6 easily
follows. We note that the explicit abc conjecture and the abc conjecture are not equivalent.

Figure 1. Histogram of the quality of abc triples (1, c− 1, c) with c < 1018
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Let S denote the set of abc triples of the form (1, c− 1, c) with c < 1018. From the ABC@Home
project, we have that #S = 45 603. The largest quality occurring in S corresponds to the abc
triple (1, 4374, 4375), which has quality approximately equal to 1.5679. Figure 1 summarize the
distribution of the quality of all abc triples in S. The bin size in the histogram is set to 5 000.
We note that all computations done in this section were done on SageMath [S+23], and our code is
available on GitHub [ASBHS23].

Table 1 lists the first fifteen abc triples of the form (1, c−1, c), their quality, and whether they arise
from one of the results proven in Section 3. The only abc triple in the table that is not of the form(
1, nl − 1, nl

)
or

(
1, nl, nl + 1

)
for some integer l > 1 is (1, 1215, 1216). However, most abc triples

in S are not of the aforementioned form. More precisely, S contains 7 376 (resp. 1 038) abc triples
of the form

(
1, nl − 1, nl

)
(resp.

(
1, nl, nl + 1

)
) for some integer l > 1. We note that (1, 8, 9) is

the only double-counted element since Mihăilescu’s Theorem [Mih04] (formerly known as Catalan’s
conjecture) asserts that 2 and 3 are the only two consecutive perfect powers. Consequently,

T =
{
(1, c− 1, c) ∈ S | c = nl or c = nl + 1 for some l > 1

}
has 8 413 elements. The highest quality abc triple in T is (1, 2400, 2401), with a quality of approx-
imately 1.4557. Observe that this abc triple is obtained from Corollary 3.9 since (1, 2400, 2401) =(
1, 74 − 1, 74

)
.

Table 1. The first fifteen abc triples of the form (1, c− 1, c)

(1, c− 1, c) q(1, c− 1, c) Arises from result in Section 3?

(1, 8, 9) 1.2263 Yes; Corollary 3.7 with (n, k) = (3, 1)

(1, 48, 49) 1.0412 Yes; Corollary 3.9 with (j, k) = (3, 1)

(1, 63, 64) 1.1127 Yes; Corollary 3.10 with (n, j, k) = (3, 1, 1)

(1, 80, 81) 1.2920 Yes; Corollary 3.8 with (n, k) = (3, 1)

(1, 224, 225) 1.0129 Yes; Corollary 3.9 with (j, k) = (4, 1)

(1, 242, 243) 1.3111 No

(1, 288, 289) 1.2252 No

(1, 512, 513) 1.3176 Yes; Corollary 3.12 with (n, j, k) = (3, 1, 2)

(1, 624, 625) 1.0790 Yes; Corollary 3.7 with (n, k) = (5, 1)

(1, 675, 676) 1.0922 No

(1, 728, 729) 1.0459 Yes; Corollary 3.7 with (n, k) = (3, 3)

(1, 960, 961) 1.0048 Yes; Corollary 3.9 with (j, k) = (5, 1)

(1, 1024, 1025) 1.1523 Yes; Corollary 3.11 with (n, k) = (4, 1)

(1, 1215, 1216) 1.1194 No

(1, 2303, 2304) 1.0204 No

Now suppose that
(
1, nl − 1, nl

)
is an abc triple for some integer l > 1. By Proposition 2.2, we

know that cosocle
(
nl − 1

)
> rad(n). However, checking that

(
1, nl − 1, nl

)
is an abc triple via this

criteria gets more difficult as nl grows. By Theorem 1, we can deduce that
(
1, nl − 1, nl

)
is an abc

triple if there is a divisorm of nl−1 such that cosocle(m) > rad(n). By considering those elements in
T of the form

(
1, nl − 1, nl

)
for some integer l > 1, we find thatm can be taken to be a proper divisor
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of nl − 1, except for the abc triples (1, c− 1, c) where c ∈ {9, 676, 11309769, 17380816062160329}.
Indeed, rad(676) = 26 and 675 = 3352. The only divisor of 675 satisfying cosocle(m) > 26 is
m = 675.

The above leads us to ask: given
(
1, nl − 1, nl

)
∈ T with l > 1 an integer, what is the least

divisor m of nl − 1 for which cosocle(m) > rad(n)? Using SageMath [S+23], we answered this
question, and our datafile can be accessed in [ASBHS23, triples for thm1.csv]. Table 2 gives the
first fifteen elements (a, b, c) in T of the form

(
1, nl − 1, nl

)
, where n and l are listed, as well as the

least divisor m of nl − 1 for which cosocle(m) > rad(n) holds. The quality of the abc triple is also
given.

Table 2. The first fifteen abc triples (a, b, c) of the form
(
1, nl − 1, nl

)
for l > 1,

with m the least divisor of nl − 1 satisfying cosocle(m) > rad(n)

(a, b, c) n l m q(a, b, c)

(1, 8, 9) 3 2 8 1.2263

(1, 48, 49) 7 2 16 1.0412

(1, 63, 64) 2 6 9 1.1127

(1, 80, 81) 3 4 8 1.2920

(1, 224, 225) 15 2 32 1.0129

(1, 242, 243) 3 5 121 1.3111

(1, 288, 289) 17 2 144 1.2252

(1, 624, 625) 5 4 16 1.0790

(1, 675, 676) 26 2 675 1.0922

(1, 728, 729) 3 6 8 1.0459

(1, 960, 961) 31 2 64 1.0048

(1, 2303, 2304) 48 2 49 1.0204

(1, 2400, 2401) 7 4 16 1.4557

(1, 3024, 3025) 55 2 432 1.0348

(1, 3968, 3969) 63 2 64 1.1554

Similarly, we ask the same question in the setting of Theorem 2. That is, given
(
1, nl, nl + 1

)
∈ T

with l > 1 an odd integer, what is the least positive divisorm of nl+1 for which cosocle(m) > rad(n)?
We note that T has 596 elements of the form

(
1, nl, nl + 1

)
for some integer l > 1. We also answer

this question through SageMath, and our datafile is found in [ASBHS23, triples for thm2.csv].
Table 3 gives the first fifteen elements (a, b, c) in T of the form

(
1, nl, nl + 1

)
, where n and l are

listed, as well as the least divisor m of nl + 1 for which cosocle(m) > rad(n) holds. In particular,
we find that (1, 8, 9) is the only abc triple of the form (1, nl, nl + 1) in T with l > 1 an odd integer
for which there is no proper divisor m of nl + 1 satisfying cosocle(m) > rad(n).
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Table 3. The first fifteen abc triples (a, b, c) of the form
(
1, nl, nl + 1

)
for l > 1 an

odd integer, with m the least divisor of nl + 1 satisfying cosocle(m) > rad(n)

(a, b, c) n l m q(a, b, c)

(1, 8, 9) 2 3 9 1.2263

(1, 512, 513) 2 9 9 1.3176

(1, 6859, 6860) 19 3 343 1.2281

(1, 12167, 12168) 23 3 676 1.2555

(1, 17576, 17577) 26 3 81 1.0039

(1, 29791, 29792) 31 3 784 1.1424

(1, 32768, 32769) 2 15 9 1.0406

(1, 110592, 110593) 48 3 49 1.0135

(1, 250047, 250048) 63 3 64 1.0351

(1, 279936, 279937) 6 7 49 1.0124

(1, 512000, 512001) 80 3 81 1.4433

(1, 1953125, 1953126) 5 9 27 1.0423

(1, 2097152, 2097153) 2 21 9 1.0287

(1, 3176523, 3176524) 147 3 676 1.0145

(1, 7077888, 7077889) 192 3 169 1.0515

Next, we investigate how many elements of T arise from the results proven in Section 3. Indeed,
each abc triple produced by the results of that section are of the form

(
1, nl − 1, nl

)
or

(
1, nl, nl + 1

)
for some integer l > 1. Moreover, for each abc triple obtained from one of our corollaries in Section 3,
we apply the following result from [vdH10, Section 2.3]:

Proposition 4.1. Let (1, c− 1, c) be an abc triple. Then the following are abc triples:(
1, (c− 1)3 , c

(
c2 − 3c+ 3

))
and

(
1, c (c− 2) , (c− 1)2

)
.

As a demonstration, the abc triple (1, 2303, 2304) is obtained from the abc triple (1, 48, 49) since
2304 = 482. In particular, (1, 2303, 2304) can now be viewed as a consequence of Corollary 3.9
and Proposition 4.1. Proposition 4.1 is part of a more general result in [vdH10, Section 2.3], which
provides a way of mapping an abc triple (a, b, c) to a new abc triple by applying polynomial identities.
The more general result arises by splitting the binomial formula (a+ b)n to obtain the following
family of identities:

an−k

 k∑
j=0

(
n

j

)
ak−jbj

+ bk+1

n−k−1∑
j=0

(
n

j

)
ajbn−k−1−j

 = cn

Taking k = 0 yields Corollary 2.4. Therefore, the two non-trivial polynomials identities with a = 1
are those occurring in Proposition 4.1.

Corollaries 3.3 through 3.12 provide us with a recipe for constructing abc triples. For each of
these corollaries, we consider the set

Ci = {(1, c− 1, c) ∈ T | (1, c− 1, c) is obtained from Corollary 3.i} ,
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where 3 ≤ i ≤ 12. By Table 1, we see that (1, 224, 225) ∈ C9, but (1, 242, 243) ̸∈ Ci for each i.
Using SageMath, we find that

i 3 4 5 6 7 8 9 10 11 12

#Ci 32 58 12 17 41 29 81 46 18 36

The low number of abc triples in T occurring in each Ci is expected. Indeed, for Corollary 3.5 to yield
an abc triples in T , we require that n > 1 be an integer, p be an odd prime such that p > rad(n),

and np(p−1)k < 1018 for some integer k. For n an odd integer, the only possible (n, p, k) is (3, 5, 1),
which gives the abc triple (1, 3486784400, 3486784401). We also note that since Corollary 3.5 is a
special case of Corollary 3.4, we have that C5 ⊆ C4. Now let

C =
⋃

3≤i≤12

Ci.

We find that #C = 164.
Lastly, let D be the set of abc triples in T with the property that an element of D is in C or can be

obtained from an abc triple in C after successive applications of Proposition 4.1 and Corollaries 2.4
and 2.5. As an illustration, the abc triple (1, 12214672127, 12214672128) ̸∈ C, but it is in D. To see
this, recall that (1, 2303, 2304) is obtained from the abc triple (1, 48, 49) via Proposition 4.1. Then,

(1, 12214672127, 12214672128) =
(
1, (c− 1)3 , c

(
c2 − 3c+ 3

))
,

where c = 2304, which shows that the abc triple is in D. In fact, with the exception of the abc triple
(1, 1215, 1216), every abc triple appearing in Table 1 is in D. Using SageMath, we find that D has
311 elements.

We conclude this article by considering the percentage of abc triples (1, c− 1, c) in S and T , that
are also in D. More precisely, for sets X and Y such that X ⊆ Y ⊆ S, we define

δX,Y (x) =
# {(1, c− 1, c) ∈ X | c ≤ x}
# {(1, c− 1, c) ∈ Y | c ≤ x}

.

In particular, δX,Y (x) gives the percentage of abc triples (1, c− 1, c) of Y with c ≤ x that are in X.
The table below gives some values of δT,S(x) , δD,S(x), and δD,T (x):

x 104 106 108 1010 1012 1014 1016 1018

δT,S(x) 80% 57.8% 45.2% 35.1% 30.0% 24.6% 20.9% 18.4%

δD,S(x) 53.3% 28.1% 13.5% 7.03% 3.79% 2.06% 1.14% 0.68%

δD,T (x) 66.7% 48.7% 29.9% 20.0% 12.6% 8.40% 5.47% 3.70%

In particular, we see that D contains nearly half of the abc triples (1, c− 1, c) in T with c ≤ 106.
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